Systemic treatments for metastatic castration-resistant prostate cancer (mCRPC) include androgen deprivation therapy, androgen receptor pathway inhibitors, chemotherapy, and radiopharmaceuticals, all of which have associated toxicity. Prostate-specific membrane antigen (PSMA) PET/CT allows for higher sensitivity in detecting metastatic disease than is possible with conventional imaging. We hypothesized that PSMA PET/CT-guided, metastasis-directed radiotherapy may offer durable disease control with low toxicity rates in patients with mCRPC who have a limited number of metastases. Methods: We retrospectively screened 5 prospective PSMA PET/CT studies for patients with mCRPC who had up to 5 sites of oligorecurrent or oligoprogressive disease on PSMA PET/CT and subsequently received definitive-intent, metastasis-directed radiotherapy to all new or progressing sites with concurrent androgen deprivation therapy. Progression-free survival, freedom from new lines of systemic therapy, and overall survival (OS) were calculated from the start of metastasis-directed radiotherapy using Kaplan-Meier analysis. Biochemical response was defined as at least a 50% decrease in prostate-specific antigen 6 mo after the start of treatment. Toxicity was graded using the Common Terminology Criteria for Adverse Events, version 5. Results: Twenty-four patients met the inclusion criteria with a median follow-up of 33.8 mo (interquartile range, 27.6-45.1 mo). Between October 2017 and April 2023, 11 patients (45.8%) had 1 treated site, 10 patients (41.7%) had 2, and 3 patients (12.5%) had 3. Five sites were prostate or prostate bed, 15 were nodal, 19 were osseous, and 1 was visceral. Seventeen patients (70.8%) continued their preexisting systemic therapy, whereas 7 (29.2%) started a new systemic therapy. Median progression-free survival was 16.4 mo (95% CI, 9.8-23.0 mo). The biochemical response rate was 66.7%. Median freedom from a new line of systemic therapy was 29.0 mo (95% CI, 7.6-50.4 mo). Median OS was not reached. The 2- and 4-y OS rates were 91.1% (95% CI, 79.3%-100%) and 68.8% (95% CI, 45.1%-92.5%), respectively. Grade 2 and grade 3 or higher toxicity rates were 4.2% and 0%, respectively. Conclusion: PSMA PET/CT-guided, metastasis-directed radiotherapy appears to offer durable disease control with low toxicity rates for oligometastatic castration-resistant prostate cancer. Further prospective studies are needed to compare metastasis-directed radiotherapy with systemic therapy versus systemic therapy alone and PSMA PET/CT-guided versus conventional imaging-guided radiotherapy.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2024 Aug 01 [Epub ahead of print]
John Nikitas, Angela Castellanos Rieger, Andrea Farolfi, Ameen Seyedroudbari, Amar U Kishan, Nicholas G Nickols, Michael L Steinberg, Luca F Valle, Matthew Rettig, Johannes Czernin, Jeremie Calais
Department of Radiation Oncology, UCLA, Los Angeles, California., Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California., Departments of Medicine and Urology, UCLA, Los Angeles; and., Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; .