Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study.

The majority of patients with metastatic castration-resistant prostate cancer (mCRPC) will have disease progression of a uniformly fatal disease. mCRPC is driven by both activated androgen receptors and elevated intratumoural androgens; however, the current standard of care is therapy that targets a single androgen signalling mechanism. We aimed to investigate the combination treatment using apalutamide plus abiraterone acetate, each of which suppresses the androgen signalling axis in a different way, versus standard care in mCRPC.

ACIS was a randomised, placebo-controlled, double-blind, phase 3 study done at 167 hospitals in 17 countries in the USA, Canada, Mexico, Europe, the Asia-Pacific region, Africa, and South America. We included chemotherapy-naive men (aged ≥18 years) with mCRPC who had not been previously treated with androgen biosynthesis signalling inhibitors and were receiving ongoing androgen deprivation therapy, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and a Brief Pain Inventory-Short Form question 3 (ie, worst pain in the past 24 h) score of 3 or lower. Patients were randomly assigned (1:1) via a centralised interactive web response system with a permuted block randomisation scheme (block size 4) to oral apalutamide 240 mg once daily plus oral abiraterone acetate 1000 mg once daily and oral prednisone 5 mg twice daily (apalutamide plus abiraterone-prednisone group) or placebo plus abiraterone acetate and prednisone (abiraterone-prednisone group), in 28-day treatment cycles. Randomisation was stratified by presence or absence of visceral metastases, ECOG performance status, and geographical region. Patients, the investigators, study team, and the sponsor were masked to group assignments. An independent data-monitoring committee continually monitored data to ensure ongoing patient safety, and reviewed efficacy data. The primary endpoint was radiographic progression-free survival assessed in the intention-to-treat population. Safety was reported for all patients who received at least one dose of study drug. This study is completed and no longer recruiting and is registered with ClinicalTrials.gov, number NCT02257736.

982 men were enrolled and randomly assigned from Dec 10, 2014 to Aug 30, 2016 (492 to apalutamide plus abiraterone-prednisone; 490 to abiraterone-prednisone). At the primary analysis (median follow-up 25·7 months [IQR 23·0-28·9]), median radiographic progression-free survival was 22·6 months (95% CI 19·4-27·4) in the apalutamide plus abiraterone-prednisone group versus 16·6 months (13·9-19·3) in the abiraterone-prednisone group (hazard ratio [HR] 0·69, 95% CI 0·58-0·83; p<0·0001). At the updated analysis (final analysis for overall survival; median follow-up 54·8 months [IQR 51·5-58·4]), median radiographic progression-free survival was 24·0 months (95% CI 19·7-27·5) versus 16·6 months (13·9-19·3; HR 0·70, 95% CI 0·60-0·83; p<0·0001). The most common grade 3-4 treatment-emergent adverse event was hypertension (82 [17%] of 490 patients receiving apalutamide plus abiraterone-prednisone and 49 [10%] of 489 receiving abiraterone-prednisone). Serious treatment-emergent adverse events occurred in 195 (40%) patients receiving apalutamide plus abiraterone-prednisone and 181 (37%) patients receiving abiraterone-prednisone. Drug-related treatment-emergent adverse events with fatal outcomes occurred in three (1%) patients in the apalutamide plus abiraterone-prednisone group (2 pulmonary embolism, 1 cardiac failure) and five (1%) patients in the abiraterone-prednisone group (1 cardiac failure and 1 cardiac arrest, 1 mesenteric arterial occlusion, 1 seizure, and 1 sudden death).

Despite the use of an active and established therapy as the comparator, apalutamide plus abiraterone-prednisone improved radiographic progression-free survival. Additional studies to identify subgroups of patients who might benefit the most from combination therapy are needed to further refine the treatment of mCRPC.

Janssen Research & Development.

The Lancet. Oncology. 2021 Sep 30 [Epub ahead of print]

Fred Saad, Eleni Efstathiou, Gerhardt Attard, Thomas W Flaig, Fabio Franke, Oscar B Goodman, Stéphane Oudard, Thomas Steuber, Hiroyoshi Suzuki, Daphne Wu, Kesav Yeruva, Peter De Porre, Sabine Brookman-May, Susan Li, Jinhui Li, Shibu Thomas, Katherine B Bevans, Suneel D Mundle, Sharon A McCarthy, Dana E Rathkopf, ACIS Investigators

Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada. Electronic address: ., Athens Medical Center, Dept of GU Oncology, Athens, Greece., University College London, London, UK., University of Colorado Cancer Center, Aurora, CO, USA., ONCOSITE, Hospital Unimed Noroeste, Ijuí, Brazil., Comprehensive Cancer Centers of Nevada, US Oncology Network, Las Vegas, NV, USA., Georges Pompidou Hospital, University of Paris, Paris, France., Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany., Toho University Sakura Medical Center, Chiba, Japan., Janssen Research & Development, Los Angeles, CA, USA., Janssen Research & Development, Beerse, Belgium., Janssen Research & Development, Los Angeles, CA, USA; Ludwig Maximilians University, Munich, Germany., Janssen Research & Development, Spring House, PA, USA., Janssen Research & Development, San Diego, CA, USA., Janssen Global Services, Horsham, PA, USA., Janssen Research & Development, Raritan, NJ, USA., Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA.