Improved multiparametric MRI discrimination between low-risk prostate cancer and benign tissues in a small cohort of 5α-reductase inhibitor treated individuals as compared with an untreated cohort.

The purpose of this study was to determine whether 5α-reductase inhibitors (5-ARIs) affect the discrimination between low-grade prostate cancer and benign tissues on multiparametric MRI (mpMRI). Twenty men with biopsy-proven Gleason 3 + 3 prostate cancer and 3 T mpMRI were studied. Ten patients (Tx) had been receiving 5-ARIs for at least a year at scan time. Ten untreated patients (Un) were matched to the treated cohort. For each subject two regions of interest representing cancerous and benign tissues were drawn within the peripheral zone of each prostate, MR measures evaluated, and cancer contrast versus benign (contrast = (MRTumor  - MRHealthy )/MRHealthy ) calculated. Decreased cancer contrast was noted on T2 -weighted images: 0.4 (Un) versus 0.3 (Tx). However, for functional MR measures, a better separation of cancerous and benign tissues was observed in the treated group. Cancer contrast on high-b diffusion-weighted imaging (DWI) was 0.61 (Un) versus 0.99 (Tx). Logistic regression analysis yielded higher AUC (area under the curve) values for distinguishing cancerous from benign regions in treated subjects on high-b DWI (0.71 (Un), 0.94 (Tx)), maximal enhancement slope (0.95 (Un), 1 (Tx)), peak enhancement (0.84 (Un), 0.93 (Tx)), washout slope (0.78 (Un), 0.99 (Tx)), K(trans) (0.9 (Un), 1 (Tx)), and combined measures (0.86 (Un), 0.99 (Tx)). Coefficients of variation for MR measures were lower in benign and cancerous tissues in the treated group compared with the untreated group. This study's results suggest an increase in homogeneity of benign and malignant peripheral zone prostatic tissues with 5-ARI exposure, observed as reduced variability of MR measures after treatment. Cancer discrimination was lower with T2 -weighted imaging, but was higher with functional MR measures in a 5-ARI-treated cohort compared with controls.

NMR in biomedicine. 2017 Feb 06 [Epub ahead of print]

Olga Starobinets, John Kurhanewicz, Susan M Noworolski

Graduate Group in Bioengineering, UCSF and UC Berkeley, CA, USA.