Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation.

SOX2 is an embryonic stem cell marker that in prostate cancer has been associated not only with tumorigenesis but also metastasis. Furthermore hypoxia in primary tumors has been linked to poor prognosis and outcomes in this disease. The goal of the present study was to investigate the impact of hypoxia on SOX2 expression and metastasis-associated functions in prostate cancer cells. A tissue microarray of 80 samples from prostate cancer patients or healthy controls was employed to examine the expression of HIF-1α and its correlation with SOX2. The role of SOX2 and HIF-1/2α in the regulation of cell invasion and sphere formation capacity under hypoxic conditions was investigated in vitro using short hairpin RNA (shRNA)-mediated knockdown in three human prostate cancer cell lines. HIF-1α expression was significantly elevated in malignant prostate tissue compared to benign or normal tissue, and in tumor samples its expression was highly correlated with SOX2. In prostate cancer cells, acute and chronic exposures to hypoxia that resulted in elevated expression levels of HIF-1α and HIF-2α, respectively, also induced SOX2. Genetic depletion of SOX2 attenuated hypoxia-induced cell functions. Knockdown of HIF-1α, but not HIF-2α, decreased acute hypoxia-mediated cell invasion and SOX2 up-regulation, whereas only HIF-2α gene silencing reduced sphere formation capacity and chronic hypoxia-mediated SOX2 up-regulation. Enhanced SOX2 expression and HIF-1α or HIF-2α associated phenotypes are dependent on the time duration of exposure to hypoxia. The present results indicate that SOX2 may be a key mediator of hypoxia-induced metastasis-associated functions and hence may serve as a potential target for therapeutic interventions for metastatic prostate cancer.

American journal of cancer research. 2016 May 01*** epublish ***

Kyung-Mi Bae, Yao Dai, Johannes Vieweg, Dietmar W Siemann

Department of Urology, College of Medicine, University of Florida Gainesville, Florida, 32610, U.S.A., Department of Radiation Oncology, College of Medicine, University of Florida Gainesville, Florida, 32610, U.S.A., Department of Urology, College of Medicine, University of Florida Gainesville, Florida, 32610, U.S.A., Department of Radiation Oncology, College of Medicine, University of Florida Gainesville, Florida, 32610, U.S.A.

E-Newsletters

Newsletter subscription

Free Daily and Weekly newsletters offered by content of interest

The fields of GU Oncology and Urology are rapidly advancing. Sign up today for articles, videos, conference highlights and abstracts from peer-review publications by disease and condition delivered to your inbox and read on the go.

Subscribe