A comprehensive evaluation of machine learning techniques for cancer class prediction based on microarray data.

Prostate cancer is among the most common cancer in males and its heterogeneity is well known. The genomic level changes can be detected in gene expression data and those changes may serve as standard model for any random cancer data for class prediction.

Various techniques were implied on prostate cancer data set in order to accurately predict cancer class including machine learning techniques. Large number of attributes but few numbers of samples in microarray data leads to poor training; therefore, the most challenging part is attribute reduction or non-significant gene reduction. In this work, a combination of interquartile range and t-test is used for attribute reduction. Further, a comprehensive evaluation of ten state-of-the-art machine learning techniques for their accuracy in class prediction of prostate cancer is done. Out of these techniques, Bayes Network outperformed with an accuracy of 94. 11% followed by Naïve Bayes with an accuracy of 91. 17%.

International journal of bioinformatics research and applications. 2015 [Epub]

Khalid Raza, Atif N Hasan

1 Department of Computer Science, Jamia Millia Islamia (Central University), New Delhi 110025, India. , 2 Department of Computer Science, Jamia Millia Islamia (Central University), New Delhi 110025, India.

PubMed

E-Newsletters

Newsletter subscription

Free Daily and Weekly newsletters offered by content of interest

The fields of GU Oncology and Urology are rapidly advancing. Sign up today for articles, videos, conference highlights and abstracts from peer-review publications by disease and condition delivered to your inbox and read on the go.

Subscribe