In order to further understand the role of tumor heterogeneity in metastasis and chemo-resistance, high metastatic PC-3 human prostate cancer variants were selected by injecting parental PC-3 cells, expressing green fluorescent protein (GFP) in the footpad of nude mice, which then metastasize to inguinal lymph nodes.
The PC-3-GFP cells which metastasized to the inguinal lymph nodes were collected and were re-injected to the footpad. After 6 such cycles, the PC-3-GFP cells collected from inguinal lymph nodes (PC-3-GFP-LN) were again injected to the footpad. PC-3-GFP-LN showed 100% metastasis to major lymph nodes (popliteal, inguinal, axillary, and cervical), and 100% metastasis to bone and lung. The percent of giant cell variants was enriched in PC-3-GFP-LN-6 compared to parental cells and increased with each cycle of selection, which in turn had increased metastasis. PC-3-GFP-LN-6 cells were resistant to 5-fluorouracil, doxorubicin and cisplatinum, compared to parental PC-3. However, PC-3-GFP-LN-6 was sensitive to the traditional Chinese medicine (TCM) herbal mixture LQ, similar to the parental cells. These results suggest that PC-3 tumors are heterogenous and that subpopulations of highly metastatic, drug-resistant cells can be step-wise selected using a mouse model of tumor progression.
PloS one. 2015 Nov 04*** epublish ***
Lei Zhang, Chengyu Wu, Robert M Hoffman
AntiCancer Inc. , San Diego, CA, United States of America. , Department of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, PR China. , AntiCancer Inc. , San Diego, CA, United States of America.