Serial stereotactic body radiation therapy for oligometastatic prostate cancer detected by novel PET-based radiotracers.

Radiopharmaceuticals, including Ga-68-prostate specific membrane antigen (PSMA)-11 and F-18-Fluciclovine, are increasingly used to inform therapies for prostate cancer (CaP). Stereotactic body radiation therapy (SBRT) to PET-detected oligometastatic CaP has been shown to improve progression free survival (PFS) and delay androgen deprivation therapy (ADT) compared to observation. For men who subsequently develop oligorecurrent CaP, outcomes following second SBRT are unknown.

A retrospective cohort study was conducted. Eligibility criteria included patients with oligometastatic (1-5 lesions) CaP detected on PSMA or Fluciclovine PET who underwent 2 consecutive SBRT courses to tracer-avid sites. Data on stage, tracer type, concurrent systemic therapy, and prostate-specific antigen (PSA) responses for first SBRT (SBRT1) and second SBRT (SBRT2) were collected. Outcomes included PSA decline ≥50% (PSA50), PFS after SBRT2, and ADT initiation or intensification-free survival after SBRT2. Factors potentially associated with PSA50 after SBRT2 was evaluated with multivariable logistic regression. Factors potentially associated with PFS and ADT initiation/intensification-free survival after SBRT2 were evaluated with separate multivariable Cox proportional-hazards models.

Twenty-five patients were identified. At SBRT2, oligorecurrence was detected on PSMA and Fluciclovine PET in 17 (68%) and 8 (32%) patients, respectively. Fifteen (60%) patients had castration-sensitive disease and 10 (40%) had castration-resistant disease. After SBRT2, 16 (64%) achieved a PSA50 response, median PFS was 11.0mo, and median ADT initiation/intensification-free survival was 23.2mo. On multivariable analysis, maximum percent change in PSA after SBRT1 (OR 0.94, 95%CI 0.88-0.99, P = 0.046) and concurrent change in systemic therapy (OR 21.61, 95%CI 1.12-417.9, P = 0.042) were associated with PSA50 responses after SBRT2. PSA50 response after SBRT1 was associated with improved PFS (HR 0.36, 95%CI 0.00-0.42, P = 0.008) and ADT initiation/intensification-free survival (HR 0.07, 95%CI 0.01-0.68, P = 0.021) after SBRT2. From SBRT1 to last follow-up (median 48 months), 7 (28%) patients remained ADT-free.

Serial SBRT for oligometastatic CaP detected on PSMA or Fluciclovine PET is feasible and can achieve PSA declines, with or without systemic therapy. Degree of biochemical response to first SBRT warrants further study as a potential predictor of PSA response, PFS, and ADT initiation/intensification-free survival following a subsequent SBRT course. This preliminary evidence provides rationale for larger, prospective studies of this strategy.

Urologic oncology. 2022 Nov 24 [Epub ahead of print]

Daniel H Kwon, Nonna Shakhnazaryan, David Shui, Julian C Hong, Osama Mohamad, Ivan de Kouchkovsky, Hala T Borno, Rohit Bose, Jonathan Chou, Arpita Desai, Lawrence Fong, Terence W Friedlander, Vadim S Koshkin, Rahul R Aggarwal, Felix Y Feng, Thomas A Hope, Eric J Small

Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA. Electronic address: ., Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA., Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Department of Radiation Oncology, University of California, San Francisco, CA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA., Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Department of Radiation Oncology, University of California, San Francisco, CA; Department of Urology, University of California, San Francisco, CA., Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA., Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Department of Radiation Oncology, University of California, San Francisco, CA., Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA.

email news signup