Chemomechanically engineered 3D organotypic platforms of bladder cancer dormancy and reactivation

Tumors undergo periods of dormancy followed by reactivation leading to metastatic disease. Arrest in the G0/G1 phase of the cell cycle and resistance to chemotherapeutic drugs are key hallmarks of dormant tumor cells. Here, we describe a 3D platform of bladder cancer cell dormancy and reactivation facilitated by a novel aminoglycoside-derived hydrogel, Amikagel. These 3D dormant tumor microenvironments (3D-DTMs) were arrested in the G0/G1 phase and were highly resistant to anti-proliferative drugs. Inhibition of targets in the cellular protein production machinery led to induction of endoplasmic reticulum (ER) stress and complete ablation of 3D-DTMs. Nanoparticle-mediated calcium delivery significantly accelerated ER stress-mediated 3D-DTM death. Transfer of 3D-DTMs onto weaker and adhesive Amikagels resulted in selective reactivation of a sub-population of N-cadherin deficient cells from dormancy. Whole-transcriptome analyses further indicated key biochemical differences between dormant and proliferative cancer cells. Taken together, our results indicate that 3D bladder cancer microenvironments of dormancy and reactivation can facilitate fundamental advances and novel drug discovery in cancer.

Biomaterials. 2017 Jul 07 [Epub ahead of print]

Taraka Sai Pavan Grandhi, Thrimoorthy Potta, Rajeshwar Nitiyanandan, Indrani Deshpande, Kaushal Rege

Biomedical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA., Chemical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA., Biological Design, Arizona State University (ASU), Tempe, AZ 85287-6106, USA., Chemical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA. Electronic address: .

E-Newsletters

Newsletter subscription

Free Daily and Weekly newsletters offered by content of interest

The fields of GU Oncology and Urology are rapidly advancing. Sign up today for articles, videos, conference highlights and abstracts from peer-review publications by disease and condition delivered to your inbox and read on the go.

Subscribe