Construction of Protein-related Risk Score Model in Bladder Urothelial Carcinoma.

Though there are several prognostic models, there is no protein-related prognostic model. The aim of this study is to identify possible prognostic-related proteins in bladder urothelial carcinoma and to try to predict the prognosis of bladder urothelial carcinoma based on these proteins.

Profile data and corresponding clinical traits were obtained from The Cancer Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA) expression. Survival-associated protein in bladder urothelial carcinoma patients were estimated with Kaplan-Meier (KM) test and COX regression analysis. The potential molecular mechanisms and properties of these bladder urothelial carcinoma-specific proteins were also explored with the help of computational skills. The risk score model was validated in different clinical traits. Sankey diagram representation is for protein correlation. A new prognostic-related risk model based on proteins was developed by using multivariable COX analysis. Next, the alteration of the corresponding genes to the 6 prognostic-related proteins was analyzed. Finally, the relation between the corresponding genes and the immune infiltration was analyzed using the TIMER.

Six proteins were identified to be associated with the prognosis of bladder urothelial carcinoma. A prognostic signature based on proteins (BECLIN, EGFR, PKCALPHA, SRC, ANNEXIN1, and AXL) performed moderately in prognostic predictions. The alteration of corresponding genes was in 31(24%) sequenced cases. ANXA1, AXL, and EGFR were positively related to CD8+ T cell.

Our results screened six proteins of clinical significance. The importance of a personalized protein signature model in the recognition, surveillance. The abnormal expression of six prognostic-related proteins may be caused by corresponding gene alteration. Furthermore, these proteins may affect survival via the immune infiltration.

BioMed research international. 2020 Jul 31*** epublish ***

Qizhan Luo, Xiaobo Zhang

Xiangya International Medical Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.