Prostate Cancer and Utilization of Multi-Parametric MRI

Over the last decade, imaging for prostate cancer has improved immensely. Specifically, prostate multiparametric MRI (mpMRI) has improved primarily as a result of an increase in magnet strength from 1 to 3-tesla. mpMRI consists of anatomic and functional imaging techniques: anatomic imaging includes T1- and T2-weighted images, and functional imaging includes diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) sequences. Currently, the recommendation is for a 1.5 tesla MRI with an endorectal coil or a 3-tesla MRI with no endorectal coil.1 

Initial T1-weighted images are performed first to determine if hemorrhage is present in the prostate. As such, most experts recommend waiting 3-8 weeks after a prostate biopsy to decrease artifact associated with hemorrhage from the biopsy.2 Subsequently, T2-weighted images provide anatomic configuration of the prostate gland: the normal peripheral zone appears as areas of high signal intensity, whereas areas of low signal intensity may represent prostate cancer, prostatitis, BPH, etc. T2-weighted images also provide information regarding extraprostatic extension (EPE) or seminal vesical invasion (SVI), which are represented by areas of low signal intensity. DWI assess the diffusion of water within the magnetic field—the closer the cells are together (ie. for a prostate cancer nodule), the lower the motion of water, which leads to a high signal intensity in this phase. The DCE phase is a T1-weighed image with gadolinium-based contrast, which assesses vascular permeability of the prostate over a period of typically 5-10 minutes. Importantly, the combination of T2, DCE, and DWI phases yields both a NPV and PPV of >90%.3


The objective of this article is to focus on indications for mpMRI use in the localized prostate cancer setting, specifically exploring its use before prostate biopsy, after a negative biopsy, on active surveillance, and prior to radical prostatectomy for surgical planning purposes.

Before Prostate Biopsy

Until recently, the utilization of mpMRI as a “triage test” prior to transrectal ultrasound (TRUS)-guided prostate biopsy was a contentious topic, relying on single centers suggesting that such an approach may decrease unnecessary biopsies.5,6 However, in 2017, the PROMIS trial provided level 1b evidence for utilizing mpMRI prior to TRUS-guided biopsy among men with elevated PSA.7 PROMIS was a multi-center, paired-cohort study to assess the diagnostic accuracy of mpMRI and TRUS biopsy against a gold-standard reference template mapping biopsy. Men were included (n=576) if they had a PSA <15 ng/ml and no history of the previous biopsy. On mapping biopsy, 71% of men had cancer, including 40% with clinically significant prostate cancer (Gleason score ≥4+3 or maximum cancer length ≥6 mm). For clinically significant disease, mpMRI was more sensitive (93%) than TRUS-biopsy (48%), albeit less specific (41% for mpMRI; 96% for TRUS-biopsy). Based on these data, a triage mpMRI would allow 25% of men to safely avoid a prostate biopsy, while at the same time reducing detection of clinically insignificant prostate cancer. Importantly, secondary to the poor specificity and positive predictive value, this study does not suggest that mpMRI should replace prostate biopsy and that men with suspicious lesions should still have histologic confirmation of prostate cancer.

Shortly after PROMIS was published, PRECISION reported results of their trial which assigned 500 men with a clinical suspicion of prostate cancer who had not previously undergone a prostate biopsy to undergo MRI with or without a targeted biopsy vs standard TRUS-guided biopsy.8 Men in the MRI group underwent a targeted biopsy if there was a suspicion of prostate cancer on imaging and did not undergo a biopsy if the MRI was negative. The primary outcome for this randomized clinical trial was a diagnosis of clinically significant prostate cancer. In the MRI-targeted biopsy group, 28% had a negative MRI and thus no biopsy. Among men undergoing targeted biopsy, 38% had clinically significant cancer, compared to 26% in the TRUS-guided biopsy group (p=0.005). Furthermore, fewer men in the MRI-targeted biopsy group had clinically insignificant prostate cancer compared to the TRUS-guided biopsy group.

Since the publication of these two trials, debate regarding the implementation of mpMRI prior to biopsy has ensued. Detractors have mentioned that the negative predictive value of mpMRI in PROMIS for detecting Gleason grade group ≥2 was only 76%, albeit no grade group ≥3 were missed on mpMRI.7 mpMRI prior to prostate biopsy has already been widely accepted in the UK and Australia where mpMRI is reimbursed in this setting.9 There is evidence to suggest that men with a negative mpMRI should not be biopsied unless caveats such as a strong family history, abnormal digital rectal exam, or BRCA mutation are present. At present, experts have pressed for a new paradigm for prostate cancer detection in which an abnormal mpMRI should have a targeted biopsy performed; if the mpMRI is negative then a routine follow-up protocol should be employed.9 It is noteworthy to mention that widespread dissemination will undoubtedly rely on (i) affordability/reimbursement of mpMRI, (ii) quality of the mpMRI, and (iii) skill of the radiologist.

After Negative Prostate Biopsy

It is generally accepted that men with a history of negative TRUS-guided biopsy and persistently elevated or increasing PSA should undergo a mpMRI prior to consideration of a second (or in some cases third or fourth) prostate biopsy. In a study of 265 patients with a PSA >4.0 ng/ml and one negative TRUS-biopsy mpMRI detected prostate cancer in 41% of men, including 87% with clinically significant prostate cancer.10 

mpMRI has been shown in the previous negative biopsy setting to detect tumors in up to 40% of cases, often in the anterior region of the prostate.11-14 An advantage of mpMRI fusion biopsy in patients with prior negative biopsy is the ability of MRI to identify suspicious lesions in areas not normally sampled by standard TRUS-guided biopsy, specifically the anterior and apical parts of the prostate. Thus, the benefit of fusion biopsy is particularly accentuated in the prior negative biopsy cohort. Furthermore, a study by Kongnyuy et al.15 suggested that there may be racial differences with regards to anterior tumors. In a cohort of 195 African-American men matched 1:1 to white men undergoing mpMRI, 47.7% of African-American men had anterior prostate lesions. Amongst these men, a history of prior negative biopsy was significantly associated with an anterior prostate lesion (OR 1.81, 95%CI 1.03-3.20). Despite an overall higher cancer detection rate among African American than white men, the presence of anterior prostate lesions and lesions harboring clinically significant cancer were not different between races.

On Active Surveillance

Over the last decade, adoption of active surveillance as a management strategy for men with clinically low-risk prostate cancer has appropriately continued to increase. However, until recently, the utilization of mpMRI in active surveillance management has been somewhat discretionary and clinician dependent.16

Earlier this year the European Association of Urology (EAU) released a position statement for active surveillance, which included 10 recommendation statements;17 the 3rd statement assessed “use and timing of MRI in active surveillance.” mpMRI can be used to increase clinically significant cancer detection, thus ensuring men are appropriately included in surveillance regimens and those with potentially threatening disease can have appropriate and timely intervention. The statement recommends that mpMRI can be performed at several time points during active surveillance:

  1. At the time of initial diagnosis – the EAU statement recommends that men diagnosed with a low-risk disease without a prior mpMRI should under a mpMRI prior to enrolment to ensure no significant disease was missed on initial biopsy. In cases of initial targeted mpMRI biopsy, both targeted and systematic biopsies should be performed.17 In addition to the excitement generated by PROMIS 7 and PRECISION,8 a recent systematic review assessed the role of mpMRI among active surveillance patients, noting that a lesion suspicious for prostate cancer was found in nearly two-thirds of men otherwise suitable for surveillance.18
  2. Before confirmatory biopsy – the EAU statement recommends that a mpMRI be performed before the confirmatory biopsy, within 12 months from initial diagnosis, and to include targeted and systematic biopsies.17 The rate of reclassification after targeted biopsies among men on active surveillance without a prior mpMRI may be as high as 22%.18-20 A recent publication assessed the value of serial mpMRI imaging among 111 men on active surveillance with > 1-year of follow-up, noting that among 33 reclassifications after one year, 55% were reclassified on only TRUS-guided biopsy.21 As such, the value of serial mpMRI in active surveillance algorithms remains unclear.
  3. During follow-up – the EAU statement does not support the use of solely using mpMRI instead of repeat biopsy in active surveillance follow-up.17 As mentioned, the use of serial mpMRIs over long-term follow-up is not currently recommended, however it may be used in situations where a targeted lesion is being followed. This is an area of great research interest considering that institutional studies with vast experience with mpMRI suggest that mpMRI supplanting follow-up biopsies is safe and feasible.22  
Last month, the ASIST trial published results of the randomized, multicenter, prospective trial assessing if mpMRI with targeted biopsy could identify a greater proportion of men with grade group ≥2 cancer on confirmatory biopsy compared with systematic biopsies.23 Among 273 men included in the study, 64% in the MRI group had a suspicious region of interest. Unfortunately, no difference was observed in the rate of grade group ≥2 upgrading in the intention to treat or per protocol cohort, grade group ≥2 upgrading within each stratum separately, or grade group ≥3. This trial confirms that there is still a role for TRUS-guided biopsy among active surveillance patients, in addition to tempering the current role for targeted biopsies in this setting.

Before Radical Prostatectomy

With improved mpMRI technology has come an interest in more precise clinical staging of localized prostate cancer, particularly before performing radical prostatectomy. Ultimately, the patient and urologist are concerned about the risk of EPE preoperatively, which dictates the degree of nerve-sparing performed at the time of radical prostatectomy. Somford et al.24 assessed mpMRI images among 183 men to determine the positive and negative predictive values of mpMRI for EPE at radical prostatectomy for different prostate cancer risk groups. The overall prevalence of EPE at radical prostatectomy was 49.7% (24.7% low-risk; 77.1% high-risk) – the overall staging sensitivity was 58.2%, specificity was 89.1%, positive predictive value was 84.1% and a negative predictive value was 68.3%. The positive predictive value was best in the high-risk cohort (88.8%) and a negative predictive value was best in the low-risk cohort (87.7%).

Data regarding whether preoperative imaging influences surgical planning is limited. However, Schiavina et al.25 assessed the impact of mpMRI on preoperative decision making among 137 patients planned for radical prostatectomy who underwent mpMRI. They found that mpMRI changes robotic surgeon’s initial surgical plan with regards to the degree of nerve-sparing in nearly half of patients. Interestingly, there was an equal alteration in surgical planning when considering a more aggressive (to less aggressive) and less aggressive (to more aggressive) preliminary plan. Although the above results for EPE prediction and tailored surgical planning are encouraging, this degree of advanced mpMRI interpretation should be reserved for expert radiologists where sensitivities and specificities for predicting EPE are typically both >80%.26


The improvement of MRI technology and development of mpMRI for prostate imaging is one of the most important technologic advancements in urologic oncology over the past decade. The PROMIS and PRECISION trials have delineated the utility of mpMRI among men considering a prostate biopsy. Likely the most accepted and concrete indication for utilization of mpMRI is in men with a negative prostate biopsy and persistent/increasingly elevated PSA, specifically to enhance the ability to detect previously unsampled (often anterior) tumors. The recent EAU statement on active surveillance has provided much-needed guidance as to when to include mpMRI in the surveillance algorithm; work is still necessary to delineate who benefits from serial mpMRI, particularly after 1 year on active surveillance. Finally, there is increased utilization of mpMRI among patients planned for radical prostatectomy to assess the degree of acceptable nerve sparing without compromising oncologic efficacy, however the high-level of mpMRI interpretation to accurately assess EPE in these instances requires expert radiologic experience.
Written by: Zachary Klaassen, MD, MSc
References: 1. Muller BG, Futterer JJ, Gupta RT, Katz A, Kirkham A, Kurhanewicz J, et al. The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int. 2014;113:218-27.
2. Rosenkrantz AB, Kopec M, Kong X, Melamed J, Dakwar G, Babb JS, et al. Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging. 2010;31:1387-94.
3. Abd-Alazeez M, Kirkham A, Ahmed HU, Arya M, Anastasiadis E, Charman SC, et al. Performance of multiparametric MRI in men at risk of prostate cancer before the first biopsy: a paired validating cohort study using template prostate mapping biopsies as the reference standard. Prostate Cancer Prostatic Dis. 2014;17:40-6.
4. Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, et al. Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur Urol. 2016;69:41-9.
5. Thompson JE, Moses D, Shnier R, Brenner P, Delprado W, Ponsky L, et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol. 2014;192:67-74.
6. Thompson JE, van Leeuwen PJ, Moses D, Shnier R, Brenner P, Delprado W, et al. The Diagnostic Performance of Multiparametric Magnetic Resonance Imaging to Detect Significant Prostate Cancer. J Urol. 2016;195:1428-35.
7. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815-22.
8. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378:1767-77.
9. Nzenza T, Murphy DG. PRECISION delivers on the PROMIS of mpMRI in early detection. Nat Rev Urol. 2018.
10. Hoeks CM, Schouten MG, Bomers JG, Hoogendoorn SP, Hulsbergen-van de Kaa CA, Hambrock T, et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol. 2012;62:902-9.
11. Kirkham AP, Haslam P, Keanie JY, McCafferty I, Padhani AR, Punwani S, et al. Prostate MRI: who, when, and how? Report from a UK consensus meeting. Clin Radiol. 2013;68:1016-23.
12. Lawrentschuk N, Fleshner N. The role of magnetic resonance imaging in targeting prostate cancer in patients with previous negative biopsies and elevated prostate-specific antigen levels. BJU Int. 2009;103:730-3.
13. Hambrock T, Somford DM, Hoeks C, Bouwense SA, Huisman H, Yakar D, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520-7.
14. Zugor V, Kuhn R, Engelhard K, Poth S, Bernat MM, Porres D, et al. The Value of Endorectal Magnetic Resonance Imaging of the Prostate in Improving the Detection of Anterior Prostate Cancer. Anticancer Res. 2016;36:4279-83.
15. Kongnyuy M, Sidana A, George AK, Muthigi A, Iyer A, Fascelli M, et al. The significance of anterior prostate lesions on multiparametric magnetic resonance imaging in African-American men. Urol Oncol. 2016;34:254 e15-21.
16. Scarpato KR, Barocas DA. Use of mpMRI in active surveillance for localized prostate cancer. Urol Oncol. 2016;34:320-5.
17. Briganti A, Fossati N, Catto JWF, Cornford P, Montorsi F, Mottet N, et al. Active Surveillance for Low-risk Prostate Cancer: The European Association of Urology Position in 2018. Eur Urol. 2018;74:357-68.
18. Schoots IG, Petrides N, Giganti F, Bokhorst LP, Rannikko A, Klotz L, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2015;67:627-36.
19. Recabal P, Assel M, Sjoberg DD, Lee D, Laudone VP, Touijer K, et al. The Efficacy of Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging Targeted Biopsy in Risk Classification for Patients with Prostate Cancer on Active Surveillance. J Urol. 2016;196:374-81.
20. Pessoa RR, Viana PC, Mattedi RL, Guglielmetti GB, Cordeiro MD, Coelho RF, et al. Value of 3-Tesla multiparametric magnetic resonance imaging and targeted biopsy for improved risk stratification in patients considered for active surveillance. BJU Int. 2017;119:535-42.
21. Hamoen EHJ, Hoeks CMA, Somford DM, van Oort IM, Vergunst H, Oddens JR, et al. Value of Serial Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging-guided Biopsies in Men with Low-risk Prostate Cancer on Active Surveillance After 1 Yr Follow-up. Eur Urol Focus. 2018.
22. Walton Diaz A, Shakir NA, George AK, Rais-Bahrami S, Turkbey B, Rothwax JT, et al. Use of serial multiparametric magnetic resonance imaging in the management of patients with prostate cancer on active surveillance. Urol Oncol. 2015;33:202 e1- e7.
23. Klotz L, Loblaw A, Sugar L, Moussa M, Berman DM, Van der Kwast T, et al. Active Surveillance Magnetic Resonance Imaging Study (ASIST): Results of a Randomized Multicenter Prospective Trial. Eur Urol. 2018.
24. Somford DM, Hamoen EH, Futterer JJ, van Basten JP, Hulsbergen-van de Kaa CA, Vreuls W, et al. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol. 2013;190:1728-34.
25. Schiavina R, Bianchi L, Borghesi M, Dababneh H, Chessa F, Pultrone CV, et al. MRI Displays the Prostatic Cancer Anatomy and Improves the Bundles Management Before Robot-Assisted Radical Prostatectomy. J Endourol. 2018;32:315-21.
26. Tay KJ, Gupta RT, Brown AF, Silverman RK, Polascik TJ. Defining the Incremental Utility of Prostate Multiparametric Magnetic Resonance Imaging at Standard and Specialized Read in Predicting Extracapsular Extension of Prostate Cancer. Eur Urol. 2016;70:211-3.

Newsletter subscription

Free Daily and Weekly newsletters offered by content of interest

The fields of GU Oncology and Urology are rapidly advancing. Sign up today for articles, videos, conference highlights and abstracts from peer-review publications by disease and condition delivered to your inbox and read on the go.