There were 43 patients referred for 12-core systematic biopsy who underwent 3D DCE-US. For each recording, parametric maps of dispersion and standard perfusion parameters were computed.

Per biopsy core, the presence of malignancy and the Gleason score were reported. Each prostate was divided in 12 sections corresponding to the biopsy locations. The 90th percentile values of the parameters in each section were compared with the corresponding biopsy outcome. Sections were considered malignant when at least half of the biopsy cores were malignant; sensitivity and specificity to prostate cancer were also evaluated.
Contrast ultrasound dispersion imaging results were superior to standard perfusion parameters. Significant difference between sections corresponding to benign and malignant biopsy cores (p<0.001) was observed. The area under the receiver operating characteristic curve strongly increased for sections consisting of ≥50% malignant cores. In a left/right analysis, sensitivity and specificity were 65% and 80%; in a per-prostate analysis, they were 94% and 50%.
The authors concluded that based on this study, quantitative 3D DCE-US by dispersion imaging can detect prostate cancer. Furthermore, a 3D approach enables the investigation of the full prostate by a single contrast bolus injection, facilitating the clinical utilization of the method. However, Dr. Mischi and colleagues recommend additional, improved validation by comparison with the histopathological analysis of corresponding radical-prostatectomy specimens.
Presented by: Massimo Mischi, MD Eindhoven University of Technology, Eindhoven, The Netherlands
Co-Authors: Schalk S, Huang J, Li J, Wijkstra H, Huang P
Written by: Zachary Klaassen, MD, Urologic Oncology Fellow, University of Toronto, Princess Margaret Cancer Centre, twitter: @zklaassen_md at the 2018 European Association of Urology Meeting EAU18, 16-20 March, 2018 Copenhagen, Denmark